743 research outputs found

    A non-parametric method for measuring the local dark matter density

    Get PDF
    We present a new method for determining the local dark matter density using kinematic data for a population of tracer stars. The Jeans equation in the zz-direction is integrated to yield an equation that gives the velocity dispersion as a function of the total mass density, tracer density, and the tilt term that describes the coupling of vertical and radial motions. We then fit a dark matter mass profile to tracer density and velocity dispersion data to derive credible regions on the vertical dark matter density profile. Our method avoids numerical differentiation, leading to lower numerical noise, and is able to deal with the tilt term while remaining one dimensional. In this study we present the method and perform initial tests on idealised mock data. We also demonstrate the importance of dealing with the tilt term for tracers that sample 1\gtrsim 1 kpc above the disc plane. If ignored, this results in a systematic underestimation of the dark matter density.Comment: V2: Improved tracer density description; increased number of mocks to explore outliers; corrected sign error in the (R, z) velocity dispersion; main conclusions unchanged. 19 pages, 14 figure

    The Local Dark Matter Density from SDSS-SEGUE G-dwarfs

    Get PDF
    We derive the local dark matter density by applying the integrated Jeans equation method from Silverwood et al. (2016) to SDSS-SEGUE G-dwarf data processed and presented by B\"udenbender et al. (2015). We use the MultiNest Bayesian nested sampling software to fit a model for the baryon distribution, dark matter and tracer stars, including a model for the 'tilt term' that couples the vertical and radial motions, to the data. The α\alpha-young population from B\"udenbender et al. (2015) yields the most reliable result of ρDM=0.460.09+0.07GeVcm3=0.0120.002+0.001Mpc3\rho_{\rm DM} = 0.46^{+0.07}_{-0.09}\, {{\rm GeV\, cm}^{-3}} = 0.012^{+0.001}_{-0.002}\, {{\rm M}_\odot \, {\rm pc}^{-3}}. Our analyses yield inconsistent results for the α\alpha-young and α\alpha-old data, pointing to problems in the tilt term and its modelling, the data itself, the assumption of a flat rotation curve, or the effects of disequilibria.Comment: 17 pages, 10 figures, submitted to MNRA

    Molecular behaviour of methanol and dimethyl ether in H-ZSM-5 catalysts as a function of Si/Al ratio: A quasielastic neutron scattering study

    Get PDF
    The dynamical behaviour of methanol and dimethyl ether in H-ZSM-5 catalysts of differing Si/Al ratios (36 and 135) was probed using quasielastic neutron scattering to understand the effect of catalyst composition (Brønsted acid site concentration) on the behaviour of species present during the initial stages of the H-ZSM-5 catalysed methanol-to-hydrocarbons process. At room temperature in H-ZSM-5(36) isotropic methanol rotation was observed (rotational diffusional coefficient, DR = 2.6 × 1010 s-1), which contrasted qualitatively with H-ZSM-5(135) in which diffusion confined to a sphere matching the 5.5 Å channel width was observed, suggesting motion is more constrained in the lower Si/Al catalyst. At higher temperatures, confined methanol diffusion is exhibited in both catalysts with self-diffusion coefficients (Ds) measured in the range of 8-9 × 10-10 m2 s-1. However, the population of molecules immobile over the timescale probed by the instrument is significantly larger in H-ZSM-5(36), consistent with the far higher number of Brønsted acid adsorption sites. For dimethyl ether, diffusion confined to a sphere at all temperatures is observed in both catalysts with Ds measured in the range of 9-11 × 10-10 m2 s-1 and a slightly smaller fraction of immobile molecules in H-ZSM-5(135). The larger Ds values obtained for dimethyl ether arise from the sphere of confinement being larger in H-ZSM-5(36) (6.2 Å in diameter) than the 5.5 Å width of the pore channels. This larger width suggests that mobile DME is sited in the channel intersections, in contrast to the mobile methanol which is sited in the channels. An even larger confining sphere of diffusion was derived in H-ZSM-5(135) (∼8 Å in diameter), which we attribute to a lack of Brønsted sites, allowing for a larger free volume for DME diffusion in the channel intersections

    The application of inelastic neutron scattering to investigate the interaction of methyl propanoate with silica

    Get PDF
    A modern industrial route for the manufacture of methyl methacrylate involves the reaction of methyl propanoate and formaldehyde over a silica-supported Cs catalyst. Although the process has been successfully commercialised, little is known about the surface interactions responsible for the forward chemistry. This work concentrates upon the interaction of methyl propanoate over a representative silica. A combination of infrared spectroscopy, inelastic neutron scattering, DFT calculations, X-ray diffraction and temperature-programmed desorption is used to deduce how the ester interacts with the silica surface

    'If it's a medical issue I would have covered it by now': learning about fibromyalgia through the hidden curriculum: a qualitative study

    Get PDF
    BACKGROUND: Fibromyalgia syndrome (FMS) is a long-term condition that affects between 1 and 5% of the general population and lies within the spectrum of medically unexplained symptoms (MUS). FMS can be difficult to diagnose and is usually done so as a diagnosis of exclusion. There is continuing debate regarding its legitimacy excluding other causes of symptoms. It is known that the diagnosis and management of MUS, including FMS, receives little attention in medical curricula and attitudes towards patients with FMS amongst medical professionals and trainees can be negative. The purpose of this study was to investigate how attitudes and perspectives of undergraduate medical students towards FMS are acquired during their training. METHODS: Qualitative interviews with 21 medical students were conducted to explore their views on FMS, encounters with patients with FMS, and where learning about FMS occurs. Participants were recruited from two English medical schools and the study was approved by two University Ethics committees. Interviews were digitally recorded with consent and data analysed thematically, using principles of constant comparison. RESULTS: The data were organised within three themes: i) FMS is a complex, poorly understood condition; ii) multiple sources for learning about FMS; and iii) consequences of negative attitudes for patients with FMS. CONCLUSION: Undergraduate medical students have limited understanding of, and are sceptical over the existence of FMS. These attitudes are influenced by the 'hidden curriculum' and witnessing attitudes and actions of their clinical teachers. Students interpret a lack of formal curriculum teaching around FMS to mean that it is not serious and hence a low priority. Encountering a patient, friend or family member with FMS can increase knowledge and lead to altered perceptions of the condition. Teaching and learning about FMS needs to be consistent to improve knowledge and attitudes of clinicians. Undergraduate students should be exposed to patients with FMS so that they better understand patients with FMS

    The effect of Si/Al ratio on local and nanoscale water diffusion in H-ZSM-5: A quasielastic neutron scattering and molecular dynamics simulation study

    Get PDF
    The dynamics of water confined in H-ZSM-5 (protonated form of the Zeolite Socony Mobil – 5) has been studied using quasielastic neutron scattering (QENS) and classical molecular dynamics simulations (MD). QENS measurements probed water confined in ZSM-5 samples with Si/Al ratios of 15, 40 and 140 at 2.8 wt% loadings. In the lower silica samples, fitting of the elastic incoherent structure factor (EISF) showed that water diffusion was confined to a sphere (with radii ranging from 3.4 to 4.3 \uc5), suggesting the mobile water was located within the MFI (framework type of H-ZSM-5) channel intersections, giving localised diffusion coefficients in the range of ∼0.9–1.8 7 10−9 m2s−1. In the high silica zeolite, the diffusion was observed to be far less confined and more long range in nature, with diffusion coefficients significantly higher than in the lower silica systems (∼1.8–4.8 7 10−9 m2s−1). MD simulations further investigated the effect of the Si/Al ratio on water diffusivity at 2.8 wt% loading (9 molecules/unit cell (UC)) in H-ZSM-5 with Si/Al ratio = 15, 47, 95 and fully siliceous. The Si/Al ratio had a significant effect on the MD calculated nanoscale diffusivity of water, reducing the self-diffusion coefficient by a factor of 2 from a fully siliceous system to that with Si/Al = 15, due to the strong coordination and increased residence time of water molecules at the Br\uf8nsted acid sites which range from ∼5 ps to ∼2 ps in the Si/Al = 15 and Si/Al = 95 systems respectively. QENS observables, both the EISF and quasielastic line broadenings, were reproduced from the MD trajectories upon sampling the experimental timescale giving both qualitative and quantitative agreement with the QENS experiments. Fitting of the MD calculated EISF showed that the experimentally observed diffusion confined to a sphere of radii ranging from 3.5 to 6.8 \uc5 was also present in our simulations, with diffusion coefficients calculated to within a factor of 0.5 of experiment

    Mononuclear phenolate diamine zinc hydride complexes and their Reactions with CO2

    Get PDF
    [Image: see text] The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2′-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4–6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7–9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10–12. The new complexes 4–12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d(8)-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(μ-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13–15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer–dimer equilibrium that is dominated by the mononuclear species at 298 K

    Comparing ammonia diffusion in NH3-SCR zeolite catalysts: a quasielastic neutron scattering and molecular dynamics simulation study

    Get PDF
    The diffusion of ammonia in the small pore zeolite and potential commercial NH3-SCR catalyst levynite (LEV) was measured and compared with its mobility in the chabazite (CHA) topology (more established in NOx abatement catalysis), using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations at 273, 323 and 373 K. The QENS experiments suggest that mobility in LEV is dominated by jump diffusion through the 8-ring windows between cages (as previously observed in CHA) which takes place at very similar rates in the two zeolites, yielding similar experimental self-diffusion coefficients (Ds). After confirming that the same characteristic motions are observed between the MD simulations and the QENS experiments on the picosecond scale, the simulations suggest that on the nanoscale, the diffusivity is higher by a factor of ∼2 in the CHA framework than in LEV. This difference between zeolites is primarily explained by the CHA cages having six 8-ring windows in the building unit, compared to only three such windows in the LEV cage building unit, thereby doubling the geometric opportunities to perform jump diffusion between cages (as characterised by the QENS experiments) leading to the corresponding increase in the MD calculated Ds. The techniques illustrate the importance of probing both pico- and nanoscale dynamics when studying intracrystalline diffusion in both NH3-SCR catalyst design, and in porous materials generally, where notable consistencies and differences may be found on either scale

    Towards microfluidic reactors for in situ synchrotron infrared studies

    Get PDF
    Anodically bonded etched silicon microfluidic devices that allow infrared spectroscopic measurement of solutions are reported. These extend spatially well-resolved in situ infrared measurement to higher temperatures and pressures than previously reported, making them useful for effectively time-resolved measurement of realistic catalytic processes. A data processing technique necessary for the mitigation of interference fringes caused by multiple reflections of the probe beam is also describe
    corecore